Normality of cut polytopes of graphs is a minor closed property
نویسنده
چکیده
Sturmfels–Sullivant conjectured that the cut polytope of a graph is normal if and only if the graph has no K5 minor. In the present paper, it is proved that the normality of cut polytopes of graphs is a minor closed property. By using this result, we have large classes of normal cut polytopes. Moreover, it turns out that, in order to study the conjecture, it is enough to consider 4-connected plane triangulations.
منابع مشابه
Cohen-Macaulay clutters with combinatorial optimization properties and parallelizations of normal edge ideals
Let C be a uniform clutter and let I = I(C) be its edge ideal. We prove that if C satisfies the packing property (resp. max-flow min-cut property), then there is a uniform Cohen-Macaulay clutter C1 satisfying the packing property (resp. max-flow min-cut property) such that C is a minor of C1. For arbitrary edge ideals of clutters we prove that the normality property is closed under parallelizat...
متن کاملEdge ideals of clique clutters of comparability graphs and the normality of monomial ideals
Let (P,≺) be a finite poset and let G be its comparability graph. If cl(G) is the clutter of maximal cliques of G, we prove that cl(G) satisfies the maxflow min-cut property and that its edge ideal is normally torsion free. We prove that edge ideals of complete admissible uniform clutters are normally torsion free. The normality of a monomial ideal is expressed in terms of blocking polyhedra an...
متن کاملMinkowski Sum of Polytopes and Its Normality
In this paper, we consider the normality or the integer decomposition property (IDP, for short) for Minkowski sums of integral convex polytopes. We discuss some properties on the toric rings associated with Minkowski sums of integral convex polytopes. We also study Minkowski sums of edge polytopes and give a sufficient condition for Minkowski sums of edge polytopes to have IDP.
متن کاملWeak signed Roman domination in graphs
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
متن کاملOn the Extension Complexity of Combinatorial Polytopes
In this paper we extend recent results of Fiorini et al. on the extension complexity of the cut polytope and related polyhedra. We first describe a lifting argument to show exponential extension complexity for a number of NP-complete problems including subset-sum and three dimensional matching. We then obtain a relationship between the extension complexity of the cut polytope of a graph and tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 310 شماره
صفحات -
تاریخ انتشار 2010